Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Systems Biology - A Textbook
  Großes Bild
 
Systems Biology - A Textbook
von: Edda Klipp, Wolfram Liebermeister, Christoph Wierling, Axel Kowald
Wiley-Blackwell, 2016
ISBN: 9783527675661
504 Seiten, Download: 84550 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Systems Biology 1  
     Contents 7  
     Preface 13  
     Guide to Different Topics of the Book 15  
     About the Authors 17  
     Part One: Introduction to Systems Biology 19  
        1: Introduction 21  
           1.1 Biology in Time and Space 21  
           1.2 Models and Modeling 22  
              1.2.1 What Is a Model? 22  
              1.2.2 Purpose and Adequateness of Models 23  
              1.2.3 Advantages of Computational Modeling 23  
           1.3 Basic Notions for Computational Models 24  
              1.3.1 Model Scope 24  
              1.3.2 Model Statements 24  
              1.3.3 System State 24  
              1.3.4 Variables, Parameters, and Constants 24  
              1.3.5 Model Behavior 25  
              1.3.6 Model Classification 25  
              1.3.7 Steady States 25  
              1.3.8 Model Assignment Is Not Unique 25  
           1.4 Networks 26  
           1.5 Data Integration 26  
           1.6 Standards 27  
           1.7 Model Organisms 27  
              1.7.1 Escherichia coli 27  
              1.7.2 Saccharomyces cerevisiae 29  
              1.7.3 Caenorhabditis elegans 29  
              1.7.4 Drosophila melanogaster 29  
              1.7.5 Mus musculus 30  
           References 30  
           Further Reading 32  
        2: Modeling of Biochemical Systems 33  
           2.1 Overview of Common Modeling Approaches for Biochemical Systems 33  
           2.2 ODE Systems for Biochemical Networks 35  
              2.2.1 Basic Components of ODE Models 36  
              2.2.2 Illustrative Examples of ODE Models 36  
                 2.2.2.1 Metabolic Example 36  
                 2.2.2.2 Regulatory Network Example 37  
           References 39  
           Further Reading 39  
        3: Structural Modeling and Analysis of Biochemical Networks 41  
           3.1 Structural Analysis of Biochemical Systems 42  
              3.1.1 System Equations 42  
              3.1.2 Information Encoded in the Stoichiometric Matrix N 43  
              3.1.3 The Flux Cone 45  
              3.1.4 Elementary Flux Modes and Extreme Pathways 45  
              3.1.5 Conservation Relations - Null Space of N 47  
           3.2 Constraint-Based Flux Optimization 48  
              3.2.1 Flux Balance Analysis 49  
              3.2.2 Geometric Interpretation of Flux Balance Analysis 49  
              3.2.3 Thermodynamic Constraints 49  
              3.2.4 Applications and Tests of the Flux Optimization Paradigm 50  
              3.2.5 Extensions of Flux Balance Analysis 51  
                 3.2.5.1 Minimization of Metabolic Adjustments 51  
                 3.2.5.2 Flux Variability Analysis 52  
                 3.2.5.3 Dynamic FBA 52  
                 3.2.5.4 Regulatory FBA 52  
           Exercises 53  
           References 54  
           Further Reading 55  
        4: Kinetic Models of Biochemical Networks: Introduction 57  
           4.1 Reaction Kinetics and Thermodynamics 57  
              4.1.1 Kinetic Modeling of Enzymatic Reactions 57  
              4.1.2 The Law of Mass Action 58  
              4.1.3 Reaction Thermodynamics 58  
              4.1.4 Michaelis-Menten Kinetics 60  
                 4.1.4.1 How to Derive a Rate Equation 61  
                 4.1.4.2 Parameter Estimation and Linearization of the Michaelis-Menten Equation 62  
                 4.1.4.3 The Michaelis-Menten Equation for Reversible Reactions 62  
              4.1.5 Regulation of Enzyme Activity by Effectors 62  
                 4.1.5.1 Substrate Inhibition 64  
                 4.1.5.2 Binding of Ligands to Proteins 64  
                 4.1.5.3 Positive Homotropic Cooperativity and the Hill Equation 65  
                 4.1.5.4 The Monod-Wyman-Changeux Model for Sigmoid Kinetics 66  
              4.1.6 Generalized Mass Action Kinetics 66  
              4.1.7 Approximate Kinetic Formats 66  
              4.1.8 Convenience Kinetics and Modular Rate Laws 67  
           4.2 Metabolic Control Analysis 68  
              4.2.1 The Coefficients of Control Analysis 69  
                 4.2.1.1 The Elasticity Coefficients 69  
                 4.2.1.2 Control Coefficients 70  
                 4.2.1.3 Response Coefficients 71  
                 4.2.1.4 Matrix Representation of the Coefficients 71  
              4.2.2 The Theorems of Metabolic Control Theory 71  
                 4.2.2.1 The Summation Theorems 72  
                 4.2.2.2 The Connectivity Theorems 72  
              4.2.3 Matrix Expressions for Control Coefficients 73  
              4.2.4 Upper Glycolysis as Realistic Model Example 76  
              4.2.5 Time-Dependent Response Coefficients 77  
           Exercises 79  
           References 79  
           Further Reading 80  
        5: Data Formats, Simulation Techniques, and Modeling Tools 81  
           5.1 Simulation Techniques and Tools 81  
              5.1.1 Differential Equations 81  
              5.1.2 Stochastic Simulations 82  
                 5.1.2.1 Stochastic and Macroscopic Rate Constants 83  
                    First-Order Reaction 83  
                    Second-Order Reaction 83  
              5.1.3 Simulation Tools 83  
                 5.1.3.1 CellDesigner 84  
                 5.1.3.2 COPASI 85  
                 5.1.3.3 Virtual Cell 88  
           5.2 Standards and Formats for Systems Biology 90  
              5.2.1 Systems Biology Markup Language 90  
              5.2.2 BioPAX 92  
              5.2.3 Systems Biology Graphical Notation 92  
           5.3 Data Resources for Modeling of Cellular Reaction Systems 93  
              5.3.1 General-Purpose Databases 93  
                 5.3.1.1 PathGuide 93  
                 5.3.1.2 BioNumbers 94  
              5.3.2 Pathway Databases 94  
                 5.3.2.1 KEGG 94  
                 5.3.2.2 Reactome 95  
                 5.3.2.3 WikiPathways 95  
                 5.3.2.4 ConsensusPathDB 95  
              5.3.3 Model Databases 95  
                 5.3.3.1 BioModels 95  
                 5.3.3.2 JWS Online 96  
           5.4 Sustainable Modeling and Model Semantics 96  
              5.4.1 Standards for Systems Biology Models 96  
              5.4.2 Model Semantics and Model Comparison 96  
                 5.4.2.1 Semantics Annotations in SBML 97  
                 5.4.2.2 Element Similarities 97  
                 5.4.2.3 Model Alignment and Model Similarities 97  
              5.4.3 Model Combination 98  
              5.4.4 Model Validity 100  
           References 101  
           Further Reading 103  
        6: Model Fitting, Reduction, and Coupling 105  
           Introduction 105  
           6.1 Parameter Estimation 106  
              6.1.1 Regression, Estimators, and Maximal Likelihood 106  
                 6.1.1.1 Regression 106  
                 6.1.1.2 Estimators and Maximal Likelihood 107  
                 6.1.1.3 Method of Least Squares 107  
              6.1.2 Parameter Identifiability 108  
                 6.1.2.1 Structural Nonidentifiability 108  
                 6.1.2.2 Practical Nonidentifiability 108  
              6.1.3 Bootstrapping 109  
                 6.1.3.1 Cross-Validation 109  
              6.1.4 Bayesian Parameter Estimation 110  
                 6.1.4.1 Bayesian Networks 111  
              6.1.5 Probability Distributions for Rate Constants 112  
                 6.1.5.1 Distributions of Enzymatic Rate Constants 112  
                 6.1.5.2 Thermodynamic Constraints on Rate Constants 112  
                 6.1.5.3 Dependence Scheme for Model Parameters 113  
                 6.1.5.4 Parameter Balancing 114  
              6.1.6 Optimization Methods 115  
                 6.1.6.1 Local Optimization 115  
                 6.1.6.2 Global Optimization 115  
                 6.1.6.3 Sampling Methods 116  
                 6.1.6.4 Genetic Algorithms 116  
           6.2 Model Selection 117  
              6.2.1 What Is a Good Model? 117  
              6.2.2 The Problem of Model Selection 118  
                 6.2.2.1 Likelihood and Overfitting 118  
                 6.2.2.2 Methods for Model Selection 119  
              6.2.3 Likelihood Ratio Test 120  
              6.2.4 Selection Criteria 120  
              6.2.5 Bayesian Model Selection 121  
           6.3 Model Reduction 122  
              6.3.1 Model Simplification 122  
              6.3.2 Reduction of Fast Processes 123  
                 6.3.2.1 Time Scale Separation 123  
                 6.3.2.2 Relaxation Time and Other Characteristic Time Scales 124  
              6.3.3 Quasi-Equilibrium and Quasi-Steady State 125  
              6.3.4 Global Model Reduction 126  
                 6.3.4.1 Linearization of Biochemical Models 126  
                 6.3.4.2 Linear Relaxation Modes 127  
                 6.3.4.3 Model Reduction 127  
           6.4 Coupled Systems and Emergent Behavior 128  
              6.4.1 Modeling of Coupled Systems 129  
                 6.4.1.1 Modeling the System Boundary 129  
                 6.4.1.2 Coupling of Submodels 129  
                 6.4.1.3 Supply-Demand Analysis 130  
                 6.4.1.4 Hierarchical Regulation Analysis 130  
              6.4.2 Combining Rate Laws into Models 131  
              6.4.3 Modular Response Analysis 131  
              6.4.4 Emergent Behavior in Coupled Systems 132  
              6.4.5 Causal Interactions and Global Behavior 133  
           Exercises 134  
           References 135  
           Further Reading 137  
        7: Discrete, Stochastic, and Spatial Models 139  
           7.1 Discrete Models 140  
              7.1.1 Boolean Networks 140  
                 7.1.1.1 Basic Principles of Boolean Networks 140  
                 7.1.1.2 Advanced Types of Boolean Networks 141  
              7.1.2 Petri Nets 142  
           7.2 Stochastic Modeling of Biochemical Reactions 145  
              7.2.1 Chance in Biochemical Reaction Systems 145  
              7.2.2 The Chemical Master Equation 147  
              7.2.3 Stochastic Simulation 147  
                 7.2.3.1 Direct Method 147  
                 7.2.3.2 Explicit ?-Leaping Method 148  
                 7.2.3.3 Stochastic Simulation and Spatial Models 148  
              7.2.4 Chemical Langevin Equation and Chemical Noise 148  
              7.2.5 Dynamic Fluctuations 150  
              7.2.6 From Stochastic to Deterministic Modeling 151  
           7.3 Spatial Models 151  
              7.3.1 Types of Spatial Models 152  
              7.3.2 Compartment Models 153  
              7.3.3 Reaction-Diffusion Systems 154  
                 7.3.3.1 Diffusion Equation 154  
                 7.3.3.2 Solutions of the Diffusion Equation 155  
                 7.3.3.3 Reaction-Diffusion Equation 155  
              7.3.4 Robust Pattern Formation in Embryonic Development 156  
                 7.3.4.1 Bicoid Gradient in the Fly Embryo 156  
              7.3.5 Spontaneous Pattern Formation 157  
              7.3.6 Linear Stability Analysis of the Activator-Inhibitor Model 158  
           Exercises 160  
           References 161  
           Further Reading 162  
        8: Network Structure, Dynamics, and Function 163  
           8.1 Structure of Biochemical Networks 164  
              8.1.1 Random Graphs 165  
                 8.1.1.1 Mathematical Graphs 165  
                 8.1.1.2 Random Graphs 165  
                 8.1.1.3 Erdös-Rényi Random Graphs 165  
                 8.1.1.4 Geometric Random Graphs 166  
                 8.1.1.5 Random Graphs with Predefined Degree Sequence 166  
              8.1.2 Scale-Free Networks 166  
                 8.1.2.1 Preferential Attachment Model 167  
              8.1.3 Connectivity and Node Distances 167  
                 8.1.3.1 Clustering Coefficient 167  
                 8.1.3.2 Small-World Networks 167  
              8.1.4 Network Motifs and Significance Tests 168  
                 8.1.4.1 Network Motifs 168  
                 8.1.4.2 Null Hypotheses for Detecting Network Structures 169  
              8.1.5 Explanations for Network Structures 169  
                 8.1.5.1 The Network Picture Revisited 170  
           8.2 Regulation Networks and Network Motifs 170  
              8.2.1 Structure of Transcription Networks 171  
              8.2.2 Regulation Edges and Their Steady-State Response 174  
              8.2.3 Negative Feedback 174  
              8.2.4 Adaptation Motif 175  
              8.2.5 Feed-Forward Loops 176  
           8.3 Modularity and Gene Functions 178  
              8.3.1 Cell Functions Are Reflected in Structure, Dynamics, Regulation, and Genetics 178  
              8.3.2 Metabolic Pathways and Elementary Modes 180  
              8.3.3 Epistasis Can Indicate Functional Modules 181  
              8.3.4 Evolution of Function and Modules 181  
              8.3.5 Independent Systems as a Tacit Model Assumption 183  
              8.3.6 Modularity and Biological Function Are Conceptual Abstractions 183  
           Exercises 184  
           References 185  
           Further Reading 187  
        9: Gene Expression Models 189  
           9.1 Mechanisms of Gene Expression Regulation 189  
              9.1.1 Transcription Factor-Initiated Gene Regulation 189  
              9.1.2 General Promoter Structure 191  
              9.1.3 Prediction and Analysis of Promoter Elements 192  
                 9.1.3.1 Sequence-Based Analysis 192  
                 9.1.3.2 Approaches that Incorporate Additional Information 193  
              9.1.4 Posttranscriptional Regulation through microRNAs 194  
                 9.1.4.1 Identification of microRNAs in the Genome Sequence 194  
                 9.1.4.2 MicroRNA Target Prediction 196  
                 9.1.4.3 Experimental Implications: RNA Interference 196  
           9.2 Dynamic Models of Gene Regulation 198  
              9.2.1 A Basic Model of Gene Expression and Regulation 198  
              9.2.2 Natural and Synthetic Gene Regulatory Networks 201  
              9.2.3 Gene Expression Modeling with Stochastic Equations 204  
           9.3 Gene Regulation Functions 205  
              9.3.1 The Lac Operon in E. coli 205  
              9.3.2 Gene Regulation Functions Derived from Equilibrium Binding 206  
              9.3.3 Thermodynamic Models of Promoter Occupancy 207  
              9.3.4 Gene Regulation Function of the Lac Promoter 209  
              9.3.5 Inferring Transcription Factor Activities from Transcription Data 210  
                 9.3.5.1 Global Regulation by Transcription Resources 211  
              9.3.6 Network Component Analysis 212  
              9.3.7 Correspondences between mRNA and Protein Levels 214  
           9.4 Fluctuations in Gene Expression 214  
              9.4.1 Stochastic Model of Transcription and Translation 215  
                 9.4.1.1 Macroscopic Kinetic Model 215  
                 9.4.1.2 Microscopic Stochastic Model 216  
                 9.4.1.3 Fluctuations in a Genetic Network 217  
              9.4.2 Intrinsic and Extrinsic Variability 218  
                 9.4.2.1 Measurement of Intrinsic and Extrinsic Variability 218  
                 9.4.2.2 Calculation of Intrinsic and Extrinsic Variability 218  
              9.4.3 Temporal Fluctuations in Gene Cascades 220  
                 9.4.3.1 Linear Model with Two Genes 220  
                 9.4.3.2 Measuring the Time Correlations in Protein Levels 221  
           Exercises 221  
           References 223  
           Further Reading 225  
        10: Variability, Robustness, and Information 227  
           10.1 Variability and Biochemical Models 228  
              10.1.1 Variability and Uncertainty Analysis 228  
                 10.1.1.1 Uncertainty Analysis and the Principle of Minimal Information 229  
                 10.1.1.2 Variability Analysis and Model Ensembles 229  
              10.1.2 Flux Sampling 230  
              10.1.3 Elasticity Sampling 231  
                 10.1.3.1 Elasticity Sampling 231  
                 10.1.3.2 Elasticity Sampling under Thermodynamic Constraints 231  
              10.1.4 Propagation of Parameter Variability in Kinetic Models 232  
                 10.1.4.1 Propagation of Variability 232  
                 10.1.4.2 Variability Can Shift Mean Values 233  
                 10.1.4.3 The Value of Robustness 234  
              10.1.5 Models with Parameter Fluctuations 234  
                 10.1.5.1 Biochemical Systems under Periodic Perturbations 234  
                 10.1.5.2 Biochemical Systems under Random Fluctuations 235  
           10.2 Robustness Mechanisms and Scaling Laws 235  
              10.2.1 Robustness in Biochemical Systems 236  
                 10.2.1.1 Biological Robustness Properties 236  
                 10.2.1.2 Mathematical Robustness Criteria 236  
              10.2.2 Robustness by Backup Elements 237  
                 10.2.2.1 Backup Genes and Gene Loss 237  
                 10.2.2.2 Backup Pathways 237  
              10.2.3 Feedback Control 237  
                 10.2.3.1 Feedback Regulation Changes the System Dynamics 237  
                 10.2.3.2 Allosteric and Transcriptional Feedback 238  
                 10.2.3.3 Integral Feedback 239  
              10.2.4 Perfect Robustness by Structure 240  
                 10.2.4.1 The Two-component System 240  
                 10.2.4.2 Chemotaxis Signaling Pathway 241  
              10.2.5 Scaling Laws 242  
                 10.2.5.1 Geometric Scaling 242  
                 10.2.5.2 Power Laws 242  
                 10.2.5.3 Scale Invariance 243  
                 10.2.5.4 Allometric Scaling 243  
                 10.2.5.5 Scaling Relations within Cells: Ribosome Content and Growth Rate 243  
              10.2.6 Time Scaling, Summation Laws, and Robustness 245  
                 10.2.6.1 Time Scaling and Metabolic Control 245  
                 10.2.6.2 Robustness against Correlated Expression Changes 245  
                 10.2.6.3 Temperature Compensation 246  
                 10.2.6.4 Limits of Robustness 246  
              10.2.7 The Role of Robustness in Evolution and Modeling 246  
                 10.2.7.1 Robustness and Evolution 246  
                 10.2.7.2 Robustness and Modeling 247  
           10.3 Adaptation and Exploration Strategies 247  
              10.3.1 Information Transmission in Signaling Pathways 248  
              10.3.2 Adaptation and Fold-Change Detection 248  
              10.3.3 Two Adaptation Mechanisms: Sensing and Random Switching 249  
                 10.3.3.1 Random Switching in Cell Populations 249  
                 10.3.3.2 Phenotypic or Responsive Switching 250  
              10.3.4 Shannon Information and the Value of Information 250  
              10.3.5 Metabolic Shifts and Anticipation 251  
                 10.3.5.1 Metabolic Shifts 251  
                 10.3.5.2 Management of a Transient State 251  
                 10.3.5.3 Adaptation Based on Indirect Cues 252  
              10.3.6 Exploration Strategies 252  
                 10.3.6.1 Stress-Induced Mutagenesis 252  
                 10.3.6.2 Chemotaxis 252  
                 10.3.6.3 Infotaxis 253  
           Exercises 254  
           References 255  
           Further Reading 257  
        11: Optimality and Evolution 259  
           11.1 Optimality in Systems Biology Models 261  
              11.1.1 Mathematical Concepts for Optimality and Compromise 263  
              11.1.2 Metabolism Is Shaped by Optimality 266  
              11.1.3 Optimality Approaches in Metabolic Modeling 268  
              11.1.4 Metabolic Strategies 270  
              11.1.5 Optimal Metabolic Adaptation 271  
           11.2 Optimal Enzyme Concentrations 273  
              11.2.1 Optimization of Catalytic Properties of Single Enzymes 273  
              11.2.2 Optimal Distribution of Enzyme Concentrations in a Metabolic Pathway 275  
              11.2.3 Temporal Transcription Programs 277  
           11.3 Evolution and Self-Organization 279  
              11.3.1 Introduction 279  
              11.3.2 Selection Equations for Biological Macromolecules 281  
                 11.3.2.1 Self-Replication without Interactions 282  
                 11.3.2.2 Selection at Constant Total Concentration of Self-Replicating Molecules 282  
              11.3.3 The Quasispecies Model: Self-Replication with Mutations 283  
                 11.3.3.1 The Genetic Algorithm 284  
                 11.3.3.2 Assessment of Sequence Length for Stable Passing On of Sequence Information 284  
                 11.3.3.3 Coexistence of Self-Replicating Sequences: Complementary Replication of RNA 285  
              11.3.4 The Hypercycle 285  
              11.3.5 Other Mathematical Models of Evolution: Spin Glass Model 287  
              11.3.6 The Neutral Theory of Molecular Evolution 288  
           11.4 Evolutionary Game Theory 289  
              11.4.1 Social Interactions 290  
              11.4.2 Game Theory 291  
              11.4.3 Evolutionary Game Theory 292  
              11.4.4 Replicator Equation for Population Dynamics 292  
              11.4.5 Evolutionarily Stable Strategies 293  
              11.4.6 Dynamical Behavior in the Rock-Scissors-Paper Game 294  
              11.4.7 Evolution of Cooperative Behavior 294  
              11.4.8 Compromises between Metabolic Yield and Efficiency 296  
           Exercises 297  
           References 298  
           Further Reading 301  
        12: Models of Biochemical Systems 303  
           12.1 Metabolic Systems 303  
              12.1.1 Basic Elements of Metabolic Modeling 304  
              12.1.2 Toy Model of Upper Glycolysis 304  
              12.1.3 Threonine Synthesis Pathway Model 307  
           12.2 Signaling Pathways 309  
              12.2.1 Function and Structure of Intra- and Intercellular Communication 310  
              12.2.2 Receptor-Ligand Interactions 311  
              12.2.3 Structural Components of Signaling Pathways 313  
                 12.2.3.1 G Proteins 314  
                 12.2.3.2 Small G Proteins 315  
                 12.2.3.3 Phosphorelay Systems 315  
                 12.2.3.4 MAP Kinase Cascades 316  
                 12.2.3.5 The Wnt/?-Catenin Signaling Pathway 319  
              12.2.4 Analysis of Dynamic and Regulatory Features of Signaling Pathways 322  
                 12.2.4.1 Detecting Feedback Loops in Dynamical Systems 322  
                 12.2.4.2 Quantitative Measures for Properties of Signaling Pathways 323  
                 12.2.4.3 Crosstalk in Signaling Pathways 324  
           12.3 The Cell Cycle 325  
              12.3.1 Steps in the Cycle 327  
              12.3.2 Minimal Cascade Model of a Mitotic Oscillator 328  
              12.3.3 Models of Budding Yeast Cell Cycle 329  
           12.4 The Aging Process 332  
              12.4.1 Evolution of the Aging Process 334  
              12.4.2 Using Stochastic Simulations to Study Mitochondrial Damage 336  
              12.4.3 Using Delay Differential Equations to Study Mitochondrial Damage 341  
           Exercises 345  
           References 345  
     Part Two: Reference Section 349  
        13: Cell Biology 351  
           13.1 The Origin of Life 352  
           13.2 Molecular Biology of the Cell 354  
              13.2.1 Chemical Bonds and Forces Important in Biological Molecules 354  
              13.2.2 Functional Groups in Biological Molecules 356  
              13.2.3 Major Classes of Biological Molecules 356  
           13.3 Structural Cell Biology 363  
              13.3.1 Structure and Function of Biological Membranes 365  
              13.3.2 Nucleus 367  
              13.3.3 Cytosol 367  
              13.3.4 Mitochondria 368  
              13.3.5 Endoplasmic Reticulum and Golgi Complex 368  
              13.3.6 Other Organelles 369  
           13.4 Expression of Genes 369  
              13.4.1 Transcription 369  
              13.4.2 Processing of the mRNA 371  
              13.4.3 Translation 371  
              13.4.4 Protein Sorting and Posttranslational Modifications 373  
              13.4.5 Regulation of Gene Expression 373  
           Exercises 374  
           References 374  
           Further Reading 374  
        14: Experimental Techniques 375  
           14.1 Restriction Enzymes and Gel Electrophoresis 376  
           14.2 Cloning Vectors and DNA Libraries 377  
           14.3 1D and 2D Protein Gels 379  
           14.4 Hybridization and Blotting Techniques 380  
              14.4.1 Southern Blotting 381  
              14.4.2 Northern Blotting 381  
              14.4.3 Western Blotting 381  
              14.4.4 In Situ Hybridization 382  
           14.5 Further Protein Separation Techniques 382  
              14.5.1 Centrifugation 382  
              14.5.2 Column Chromatography 382  
           14.6 Polymerase Chain Reaction 383  
           14.7 Next-Generation Sequencing 384  
           14.8 DNA and Protein Chips 385  
              14.8.1 DNA Chips 385  
              14.8.2 Protein Chips 385  
           14.9 RNA-Seq 386  
           14.10 Yeast Two-Hybrid System 386  
           14.11 Mass Spectrometry 387  
           14.12 Transgenic Animals 388  
              14.12.1 Microinjection and ES Cells 388  
              14.12.2 Genome Editing Using ZFN, TALENs, and CRISPR 388  
           14.13 RNA Interference 389  
           14.14 ChIP-on-Chip and ChIP-PET 390  
           14.15 Green Fluorescent Protein 392  
           14.16 Single-Cell Experiments 393  
           14.17 Surface Plasmon Resonance 394  
           Exercises 395  
           References 395  
        15: Mathematical and Physical Concepts 399  
           15.1 Linear Algebra 399  
              15.1.1 Linear Equations 399  
                 15.1.1.1 The Gaussian Elimination Algorithm 401  
                 15.1.1.2 Systematic Solution of Linear Systems 401  
              15.1.2 Matrices 402  
                 15.1.2.1 Basic Notions 402  
                 15.1.2.2 Linear Dependency 402  
                 15.1.2.3 Basic Matrix Operations 402  
                 15.1.2.4 Dimension and Rank 403  
                 15.1.2.5 Eigenvalues and Eigenvectors of a Square Matrix 404  
           15.2 Dynamic Systems 404  
              15.2.1 Describing Dynamics with Ordinary Differential Equations 404  
                 15.2.1.1 Notations 404  
              15.2.2 Linearization of Autonomous Systems 406  
              15.2.3 Solution of Linear ODE Systems 406  
              15.2.4 Stability of Steady States 406  
              15.2.5 Global Stability of Steady States 408  
              15.2.6 Limit Cycles 408  
           15.3 Statistics 409  
              15.3.1 Basic Concepts of Probability Theory 409  
                 15.3.1.1 Probability Spaces 409  
                 15.3.1.2 Random Variables, Densities, and Distribution Functions 411  
                 15.3.1.3 Transforming Probability Densities 413  
                 15.3.1.4 Product Experiments and Independence 413  
                 15.3.1.5 Limit Theorems 413  
              15.3.2 Descriptive Statistics 414  
                 15.3.2.1 Statistics for Sample Location 414  
                 15.3.2.2 Statistics for Sample Variability 415  
                 15.3.2.3 Density Estimation 415  
                 15.3.2.4 Correlation of Samples 416  
              15.3.3 Testing Statistical Hypotheses 417  
                 15.3.3.1 Statistical Framework 418  
                 15.3.3.2 Two Sample Location Tests 418  
              15.3.4 Linear Models 419  
                 15.3.4.1 ANOVA 420  
                 15.3.4.2 Multiple Linear Regression 421  
              15.3.5 Principal Component Analysis 422  
           15.4 Stochastic Processes 423  
              15.4.1 Chance in Physical Theories 423  
              15.4.2 Mathematical Random Processes 424  
                 15.4.2.1 Reduced and Conditional Distributions 425  
              15.4.3 Brownian Motion as a Random Process 425  
              15.4.4 Markov Processes 427  
              15.4.5 Markov Chains 428  
              15.4.6 Jump Processes in Continuous Time 428  
                 15.4.6.1 Deriving the Master Equation 428  
              15.4.7 Continuous Random Processes 429  
                 15.4.7.1 Langevin Equations 429  
                 15.4.7.2 The Fokker-Planck Equation 429  
              15.4.8 Moment-Generating Functions 430  
           15.5 Control of Linear Dynamical Systems 430  
              15.5.1 Linear Dynamical Systems 431  
              15.5.2 System Response and Linear Filters 432  
                 15.5.2.1 Impulse Input 432  
                 15.5.2.2 Oscillatory Input 432  
              15.5.3 Random Fluctuations and Spectral Density 433  
              15.5.4 The Gramian Matrices 433  
              15.5.5 Model Reduction 434  
              15.5.6 Optimal Control 434  
           15.6 Biological Thermodynamics 435  
              15.6.1 Microstate and Statistical Ensemble 435  
                 15.6.1.1 Thermodynamic Equilibrium and Detailed Balance 436  
              15.6.2 Boltzmann Distribution and Free Energy 436  
                 15.6.2.1 Boltzmann Distribution 436  
                 15.6.2.2 Free Energy 437  
              15.6.3 Entropy 437  
                 15.6.3.1 The Second Law of Thermodynamics 437  
                 15.6.3.2 Statistical Entropy 438  
                 15.6.3.3 Principle of Maximal Entropy 439  
              15.6.4 Equilibrium Constant and Energies 439  
              15.6.5 Chemical Reaction Systems 440  
                 15.6.5.1 Temperature and Pressure as Free Variables 440  
                 15.6.5.2 Gibbs Energy and Chemical Potentials 440  
                 15.6.5.3 Reaction Gibbs Energy 441  
                 15.6.5.4 Wegscheider Conditions and Haldane Relationships 441  
                 15.6.5.5 Data for Thermodynamic Calculations 442  
              15.6.6 Nonequilibrium Reactions 442  
                 15.6.6.1 Variational Principle for Flux States 442  
                 15.6.6.2 Consequences of the Flux-Force Relation 443  
                 15.6.6.3 Reaction Energetics and Flux Control 443  
              15.6.7 The Role of Thermodynamics in Systems Biology 443  
           15.7 Multivariate Statistics 444  
              15.7.1 Planning and Designing Experiments for Case-Control Studies 444  
              15.7.2 Tests for Differential Expression 445  
                 15.7.2.1 DNA Arrays 445  
                 15.7.2.2 Next-Generation Sequencing 446  
              15.7.3 Multiple Testing 446  
              15.7.4 ROC Curve Analysis 447  
              15.7.5 Clustering Algorithms 448  
                 15.7.5.1 Hierarchical Clustering 449  
                 15.7.5.2 Self-Organizing Maps (SOMs) 451  
                 15.7.5.3 K-Means 452  
              15.7.6 Cluster Validation 453  
              15.7.7 Overrepresentation and Enrichment Analyses 454  
              15.7.8 Classification Methods 456  
                 15.7.8.1 Support Vector Machines 457  
                 15.7.8.2 Other Approaches 458  
           Exercises 459  
           References 461  
        16: Databases 463  
           16.1 General-Purpose Data Resources 463  
              16.1.1 PathGuide 463  
              16.1.2 BioNumbers 464  
           16.2 Nucleotide Sequence Databases 464  
              16.2.1 Data Repositories of the National Center for Biotechnology Information 464  
              16.2.2 GenBank/RefSeq/UniGene 464  
              16.2.3 Entrez 465  
              16.2.4 EMBL Nucleotide Sequence Database 465  
              16.2.5 European Nucleotide Archive 465  
              16.2.6 Ensembl 465  
           16.3 Protein Databases 466  
              16.3.1 UniProt/Swiss-Prot/TrEMBL 466  
              16.3.2 Protein Data Bank 466  
              16.3.3 PANTHER 466  
              16.3.4 InterPro 466  
              16.3.5 iHOP 467  
           16.4 Ontology Databases 467  
              16.4.1 Gene Ontology 467  
           16.5 Pathway Databases 467  
              16.5.1 KEGG 468  
              16.5.2 Reactome 468  
              16.5.3 ConsensusPathDB 469  
              16.5.4 WikiPathways 469  
           16.6 Enzyme Reaction Kinetics Databases 469  
              16.6.1 BRENDA 469  
              16.6.2 SABIO-RK 470  
           16.7 Model Collections 470  
              16.7.1 BioModels 470  
              16.7.2 JWS Online 470  
           16.8 Compound and Drug Databases 470  
              16.8.1 ChEBI 471  
              16.8.2 Guide to PHARMACOLOGY 471  
           16.9 Transcription Factor Databases 471  
              16.9.1 JASPAR 471  
              16.9.2 TRED 471  
              16.9.3 Transcription Factor Encyclopedia 472  
           16.10 Microarray and Sequencing Databases 472  
              16.10.1 Gene Expression Omnibus 472  
              16.10.2 ArrayExpress 472  
           References 473  
        17: Software Tools for Modeling 475  
           17.1 13C-Flux2 476  
           17.2 Antimony 476  
           17.3 Berkeley Madonna 477  
           17.4 BIOCHAM 477  
           17.5 BioNetGen 477  
           17.6 Biopython 477  
           17.7 BioTapestry 478  
           17.8 BioUML 478  
           17.9 CellDesigner 478  
           17.10 CellNetAnalyzer 478  
           17.11 Copasi 479  
           17.12 CPN Tools 479  
           17.13 Cytoscape 479  
           17.14 E-Cell 479  
           17.15 EvA2 479  
           17.16 FEniCS Project 480  
           17.17 Genetic Network Analyzer (GNA) 480  
           17.18 Jarnac 480  
           17.19 JDesigner 481  
           17.20 JSim 481  
           17.21 KNIME 481  
           17.22 libSBML 482  
           17.23 MASON 482  
           17.24 Mathematica 482  
           17.25 MathSBML 483  
           17.26 Matlab 483  
           17.27 MesoRD 483  
           17.28 Octave 483  
           17.29 Omix Visualization 484  
           17.30 OpenCOR 484  
           17.31 Oscill8 484  
           17.32 PhysioDesigner 484  
           17.33 PottersWheel 485  
           17.34 PyBioS 485  
           17.35 PySCeS 485  
           17.36 R 486  
           17.37 SAAM II 486  
           17.38 SBMLeditor 486  
           17.39 SemanticSBML 486  
           17.40 SBML-PET-MPI 487  
           17.41 SBMLsimulator 487  
           17.42 SBMLsqueezer 487  
           17.43 SBML Toolbox 488  
           17.44 SBtoolbox2 488  
           17.45 SBML Validator 488  
           17.46 SensA 488  
           17.47 SmartCell 489  
           17.48 STELLA 489  
           17.49 STEPS 489  
           17.50 StochKit2 489  
           17.51 SystemModeler 490  
           17.52 Systems Biology Workbench 490  
           17.53 Taverna 490  
           17.54 VANTED 491  
           17.55 Virtual Cell (VCell) 491  
           17.56 xCellerator 491  
           17.57 XPPAUT 491  
           Exercises 492  
           References 492  
     Index 493  
     EULA 507  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz