Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
The Theory of Laser Materials Processing - Heat and Mass Transfer in Modern Technology
  Großes Bild
 
The Theory of Laser Materials Processing - Heat and Mass Transfer in Modern Technology
von: John Dowden, Wolfgang Schulz
Springer-Verlag, 2017
ISBN: 9783319567112
442 Seiten, Download: 12450 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: B (paralleler Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Preface 6  
  Contents 9  
  Contributors 16  
  1 Mathematics in Laser Processing 17  
     Abstract 17  
     1.1 Mathematics and Its Application 17  
     1.2 Formulation in Terms of Partial Differential Equations 19  
        1.2.1 Length Scales 19  
        1.2.2 Rectangular Cartesian Tensors 20  
        1.2.3 Conservation Equations and Their Generalisations 23  
        1.2.4 Governing Equations of Generalised Conservation Type 25  
           1.2.4.1 Flow of a Viscous Fluid 25  
           1.2.4.2 Viscous Heat Flow 27  
           1.2.4.3 Conservation of Electric Charge 28  
           1.2.4.4 Linear Thermo-Elasticity in a Moving Frame of Reference 28  
        1.2.5 Gauss’s Law 29  
     1.3 Boundary and Interface Conditions 30  
        1.3.1 Generalised Conservation Conditions 30  
        1.3.2 The Kinematic Condition in Fluid Dynamics 35  
     1.4 Fick’s Laws 36  
     1.5 Electromagnetism 37  
        1.5.1 Maxwell’s Equations 37  
        1.5.2 Ohm’s Law 39  
     References 40  
  2 Simulation of Laser Cutting 41  
     2.1 Introduction 42  
        2.1.1 Physical Phenomena and Experimental Observation 44  
     2.2 Mathematical Formulation and Analysis 47  
        2.2.1 The One-Phase Problem 49  
        2.2.2 The Two-Phase Problem 62  
        2.2.3 Three-Phase Problem 70  
     2.3 Outlook 84  
     References 85  
  3 Glass Cutting 89  
     Abstract 89  
     3.1 Introduction 90  
     3.2 Phenomenology of Glass Processing with Ultrashort Laser Radiation 90  
     3.3 Modelling the Propagation of Radiation and the Dynamics of Electron Density 92  
     3.4 Radiation Propagation Solved by BPM Methods 93  
     3.5 The Dynamics of Electron Density Described by Rate Equations 93  
     3.6 Properties of the Solution with Regard to Ablation and Damage 95  
     3.7 Electronic Damage Versus Thermal Damage 98  
     3.8 Glass Cutting by Direct Ablation or Filamentation? 102  
     Acknowledgements 103  
     References 103  
  4 Keyhole Welding: The Solid and Liquid Phases 105  
     Abstract 105  
     4.1 Heat Generation and Heat Transfer 105  
        4.1.1 Absorption 105  
        4.1.2 Heat Conduction and Convection 107  
     4.2 Steady State 3D-Solutions Based on Moving Point Sources of Heat 108  
     4.3 Steady State 2D-Heat Conduction from a Moving Cylinder at Constant Temperature 110  
     4.4 Sophisticated Quasi-3D-Model Based on the Moving Line Source of Heat 112  
        4.4.1 Surface Convection and Radiation 113  
        4.4.2 Phase Transformations 114  
        4.4.3 Transient and Pulsed Heat Conduction 115  
     4.5 Model for Initiation of Laser Spot Welding 115  
        4.5.1 Geometry of the Liquid Pool 117  
     4.6 Mass Balance of a Welding Joint 118  
     4.7 Melt Flow 119  
        4.7.1 Melt Flow Passing Around the Keyhole 120  
        4.7.2 Numerical 2D-Simulation of the Melt Flow Around a Prescribed Keyhole Shape 121  
        4.7.3 Marangoni Flow Driven by Surface Tension Gradients 123  
        4.7.4 Flow Redirection, Inner Eddies, Spatter and Stagnation Points 124  
        4.7.5 Humping Caused by Accumulating Downstream Flow 125  
        4.7.6 Keyhole Front Melt Film Flow Downwards, Driven by Recoil Pressure 125  
     4.8 Concluding Remarks 126  
     References 127  
  5 Laser Keyhole Welding: The Vapour Phase 129  
     Abstract 129  
     5.1 Notation 129  
     5.2 The Keyhole 131  
     5.3 The Keyhole Wall 135  
        5.3.1 The Knudsen Layer 135  
           5.3.1.1 Ablation Through the Knudsen Layer 135  
           5.3.1.2 Thermal Flux and Viscous Slip in the Knudsen Layer 138  
        5.3.2 Fresnel Absorption 139  
     5.4 The Role of Convection in the Transfer of Energy to the Keyhole Wall 140  
     5.5 Fluid Flow in the Keyhole 144  
        5.5.1 General Aspects 144  
        5.5.2 Turbulence in the Weld Pool and the Keyhole 145  
        5.5.3 Stability of the Keyhole Wall 147  
        5.5.4 Stability of Waves of Acoustic Type 147  
        5.5.5 Elongation of the Keyhole 151  
     5.6 Further Aspects of Fluid Flow 152  
        5.6.1 Simplifying Assumptions for an Analytical Model 152  
        5.6.2 Lubrication Theory Model 152  
        5.6.3 Boundary Conditions 153  
        5.6.4 Solution Matched to the Liquid Region 157  
     5.7 Electromagnetic Effects 158  
        5.7.1 Self-induced Currents in the Vapour 158  
        5.7.2 The Laser Beam as a Current Guide 163  
           5.7.2.1 Note on Cooling by Thermal Convection 165  
     References 165  
  6 Basic Concepts of Laser Drilling 168  
     6.1 Introduction 169  
     6.2 Technology and Laser Systems 169  
     6.3 Diagnostics and Monitoring for s Pulse Drilling 171  
     6.4 Phenomena of Beam-Matter Interaction 173  
        6.4.1 Physical Domains---Map of Intensity and Pulse Duration 174  
        6.4.2 Beam Propagation 180  
        6.4.3 Refraction and Reflection 182  
        6.4.4 Absorption and Scattering in the Gaseous Phase 183  
        6.4.5 Kinetics and Equation of State 184  
     6.5 Phenomena of the Melt Expulsion Domain 186  
     6.6 Mathematical Formulation of Reduced Models 188  
        6.6.1 Spectral Decomposition Applied to Dynamics in Recast Formation 189  
     6.7 Analysis 190  
        6.7.1 Initial Heating and Relaxation of Melt Flow 190  
        6.7.2 Widening of the Drill by Convection 192  
        6.7.3 Narrowing of the Drill by Recast Formation 193  
        6.7.4 Melt Closure of the Drill Hole 195  
        6.7.5 Drilling with Inertial Confinement---Helical Drilling 197  
     6.8 Outlook 199  
     References 200  
  7 Arc Welding and Hybrid Laser-Arc Welding 204  
     Abstract 204  
     7.1 The Structure of the Welding Arc 204  
        7.1.1 Macroscopic Considerations 205  
        7.1.2 Arc Temperatures and the PLTE Assumption 215  
        7.1.3 Multi-component Plasmas 221  
     7.2 The Arc Electrodes 224  
        7.2.1 The Cathode 224  
        7.2.2 The Anode 226  
     7.3 Fluid Flow in the Arc-Generated Weld Pool 227  
     7.4 Unified Arc and Electrode Models 230  
     7.5 Arc Plasma-Laser Interactions 233  
        7.5.1 Absorption 234  
        7.5.2 Scattering 239  
        7.5.3 Absorption Measurements 241  
     7.6 Laser-Arc Hybrid Welding 242  
     References 250  
  8 Metallurgy and Imperfections of Welding and Hardening 255  
     Abstract 255  
     8.1 Thermal Cycle and Cooling Rate 255  
     8.2 Resolidification 258  
     8.3 Metallurgy 259  
        8.3.1 Diffusion 259  
        8.3.2 Fe-Based Alloys 261  
           8.3.2.1 Low Alloy Steel 261  
        8.3.3 Model of the Metallurgy During Transformation Hardening of Low Alloy Steel 263  
        8.3.4 Non-Fe-Based Alloys 265  
     8.4 Imperfections 266  
        8.4.1 Large Geometrical Imperfections 267  
        8.4.2 Cracks 268  
        8.4.3 Spatter 269  
        8.4.4 Pores and Inclusions 270  
     References 274  
  9 Laser Cladding 276  
     Abstract 276  
     9.1 Introduction 276  
     9.2 Beam-Particle Interaction 283  
        9.2.1 Powder Mass Flow Density 283  
        9.2.2 Effect of Gravity on the Mass Flow Distribution 284  
        9.2.3 Beam Shadowing and Particle Heating 286  
     9.3 Formation of the Weld Bead 289  
        9.3.1 Particle Absorption and Dissolution 290  
        9.3.2 Shape of the Cross Section of a Weld Bead 291  
        9.3.3 Three-dimensional Model of the Melt Pool Surface 293  
        9.3.4 Temperature Field Calculation Using Rosenthal’s Solution 294  
        9.3.5 Self-consistent Calculation of the Temperature Field and Bead Geometry 296  
        9.3.6 Role of the Thermocapillary Flow 297  
     9.4 Thermal Stress and Distortion 300  
        9.4.1 Fundamentals of Thermal Stress 300  
        9.4.2 Phase Transformations 302  
        9.4.3 FEM Model and Results 304  
        9.4.4 Simplified Heuristic Model 305  
        9.4.5 Crack Prevention by Induction Assisted Laser Cladding 311  
     9.5 Conclusions and Future Work 314  
     References 316  
  10 Laser Forming 320  
     Abstract 320  
     10.1 History of Thermal Forming 322  
     10.2 Forming Mechanisms 323  
        10.2.1 Temperature Gradient Mechanism 324  
        10.2.2 Residual Stress Point Mechanism 331  
        10.2.3 Upsetting Mechanism 333  
        10.2.4 Buckling Mechanism 338  
        10.2.5 Residual Stress Relaxation Mechanism 342  
        10.2.6 Martensite Expansion Mechanism 343  
        10.2.7 Shock Wave Mechanism 344  
     10.3 Applications 345  
        10.3.1 Plate Bending 346  
        10.3.2 Tube Bending/Forming 347  
        10.3.3 High Precision Positioning Using Actuators 348  
        10.3.4 Straightening of Weld Distortion 349  
        10.3.5 Thermal Pre-stressing 350  
     References 351  
  11 Femtosecond Laser Pulse Interactions with Metals 354  
     Abstract 354  
     11.1 Introduction 354  
     11.2 What Is Different Compared to Longer Pulses? 356  
        11.2.1 The Electron-Electron Scattering Time 356  
        11.2.2 The Nonequilibrium Electron Distribution 359  
     11.3 Material Properties Under Exposure to Femtosecond Laser Pulses 361  
        11.3.1 Optical Properties 361  
        11.3.2 Thermal Properties 363  
        11.3.3 Electronic Thermal Diffusivity 365  
     11.4 Determination of the Electron and Phonon Temperature Distribution 366  
        11.4.1 The Two-Temperature Model 366  
        11.4.2 The Extended Two-Temperature Model 369  
     11.5 Summary and Conclusions 372  
     References 373  
  12 Meta-Modelling and Visualisation of Multi-dimensional Data for Virtual Production Intelligence 375  
     Abstract 375  
     12.1 Introduction 375  
     12.2 Implementing Virtual Production Intelligence 377  
     12.3 Meta-Modelling Providing Operative Design Tools 378  
     12.4 Meta-Modelling by Smart Sampling with Discontinuous Response 384  
     12.5 Global Sensitivity Analysis and Variance Decomposition 389  
     12.6 Reduced Models and Emulators 392  
     12.7 Summary and Advances in Meta-Modelling 393  
     Acknowledgements 393  
     References 394  
  13 Comprehensive Numerical Simulation of Laser Materials Processing 396  
     13.1 Motivation---The Pursuit of Ultimate Understanding 397  
     13.2 Review 398  
     13.3 Correlation, The Full Picture 404  
     13.4 Introduction to Numerical Techniques 405  
        13.4.1 The Method of Discretisation 405  
        13.4.2 Meshes 406  
        13.4.3 Explicit Versus Implicit 407  
        13.4.4 Discretisation of Transport pde's 408  
        13.4.5 Schemes of Higher Order 411  
        13.4.6 The Multi Phase Problem 413  
     13.5 Solution of the Energy Equation and Phase Changes 416  
        13.5.1 Gas Dynamics 419  
        13.5.2 Beam Tracing and Associated Difficulties 421  
     13.6 Program Development and Best Practice When Using Analysis Tools 423  
     13.7 Introduction to High Performance Computing 425  
        13.7.1 MPI 425  
        13.7.2 openMP 427  
        13.7.3 Hybrid 428  
        13.7.4 Performance 429  
     13.8 Visualisation Tools 430  
     13.9 Summary and Concluding Remarks 431  
     References 432  
  Index 437  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz