Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Principles of Computational Cell Biology - From Protein Complexes to Cellular Networks
  Großes Bild
 
Principles of Computational Cell Biology - From Protein Complexes to Cellular Networks
von: Volkhard Helms
Wiley-VCH, 2018
ISBN: 9783527810338
464 Seiten, Download: 16737 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Cover 1  
  Title Page 5  
  Copyright 6  
  Contents 7  
  Preface of the First Edition 17  
  Preface of the Second Edition 19  
  Chapter 1 Networks in Biological Cells 21  
     1.1 Some Basics About Networks 21  
        1.1.1 Random Networks 22  
        1.1.2 Small?World Phenomenon 22  
        1.1.3 Scale?Free Networks 23  
     1.2 Biological Background 24  
        1.2.1 Transcriptional Regulation 25  
        1.2.2 Cellular Components 25  
        1.2.3 Spatial Organization of Eukaryotic Cells into Compartments 27  
        1.2.4 Considered Organisms 28  
     1.3 Cellular Pathways 28  
        1.3.1 Biochemical Pathways 28  
        1.3.2 Enzymatic Reactions 31  
        1.3.3 Signal Transduction 31  
        1.3.4 Cell Cycle 32  
     1.4 Ontologies and Databases 32  
        1.4.1 Ontologies 32  
        1.4.2 Gene Ontology 33  
        1.4.3 Kyoto Encyclopedia of Genes and Genomes 33  
        1.4.4 Reactome 33  
        1.4.5 Brenda 34  
        1.4.6 DAVID 34  
        1.4.7 Protein Data Bank 35  
        1.4.8 Systems Biology Markup Language 35  
     1.5 Methods for Cellular Modeling 37  
     1.6 Summary 37  
     1.7 Problems 37  
     Bibliography 38  
  Chapter 2 Structures of Protein Complexes and Subcellular Structures 41  
     2.1 Examples of Protein Complexes 42  
        2.1.1 Principles of Protein–Protein Interactions 44  
        2.1.2 Categories of Protein Complexes 47  
     2.2 Complexome: The Ensemble of Protein Complexes 48  
        2.2.1 Complexome of Saccharomyces cerevisiae 48  
        2.2.2 Bacterial Protein Complexomes 50  
        2.2.3 Complexome of Human 51  
     2.3 Experimental Determination of Three?Dimensional Structures of Protein Complexes 51  
        2.3.1 X?ray Crystallography 52  
        2.3.2 NMR 54  
        2.3.3 Electron Crystallography/Electron Microscopy 54  
        2.3.4 Cryo?EM 54  
        2.3.5 Immunoelectron Microscopy 55  
        2.3.6 Fluorescence Resonance Energy Transfer 55  
        2.3.7 Mass Spectroscopy 56  
     2.4 Density Fitting 58  
        2.4.1 Correlation?Based Density Fitting 58  
     2.5 Fourier Transformation 60  
        2.5.1 Fourier Series 60  
        2.5.2 Continuous Fourier Transform 61  
        2.5.3 Discrete Fourier Transform 61  
        2.5.4 Convolution Theorem 61  
        2.5.5 Fast Fourier Transformation 62  
     2.6 Advanced Density Fitting 64  
        2.6.1 Laplacian Filter 65  
     2.7 FFT Protein–Protein Docking 66  
     2.8 Protein–Protein Docking Using Geometric Hashing 68  
     2.9 Prediction of Assemblies from Pairwise Docking 69  
        2.9.1 CombDock 69  
        2.9.2 Multi?LZerD 72  
        2.9.3 3D?MOSAIC 72  
     2.10 Electron Tomography 73  
        2.10.1 Reconstruction of Phantom Cell 75  
        2.10.2 Protein Complexes in Mycoplasma pneumoniae 75  
     2.11 Summary 76  
     2.12 Problems 77  
        2.12.1 Mapping of Crystal Structures into EM Maps 77  
     Bibliography 80  
  Chapter 3 Analysis of Protein–Protein Binding 83  
     3.1 Modeling by Homology 83  
     3.2 Properties of Protein–Protein Interfaces 86  
        3.2.1 Size and Shape 86  
        3.2.2 Composition of Binding Interfaces 88  
        3.2.3 Hot Spots 89  
        3.2.4 Physicochemical Properties of Protein Interfaces 91  
        3.2.5 Predicting Binding Affinities of Protein–Protein Complexes 92  
        3.2.6 Forces Important for Biomolecular Association 93  
     3.3 Predicting Protein–Protein Interactions 95  
        3.3.1 Pairing Propensities 95  
        3.3.2 Statistical Potentials for Amino Acid Pairs 98  
        3.3.3 Conservation at Protein Interfaces 99  
        3.3.4 Correlated Mutations at Protein Interfaces 103  
     3.4 Summary 106  
     3.5 Problems 106  
     Bibliography 106  
  Chapter 4 Algorithms on Mathematical Graphs 109  
     4.1 Primer on Mathematical Graphs 109  
     4.2 A Few Words About Algorithms and Computer Programs 110  
        4.2.1 Implementation of Algorithms 111  
        4.2.2 Classes of Algorithms 112  
     4.3 Data Structures for Graphs 113  
     4.4 Dijkstra's Algorithm 115  
        4.4.1 Description of the Algorithm 116  
        4.4.2 Pseudocode 120  
        4.4.3 Running Time 121  
     4.5 Minimum Spanning Tree 121  
        4.5.1 Kruskal's Algorithm 122  
     4.6 Graph Drawing 122  
     4.7 Summary 124  
     4.8 Problems 125  
        4.8.1 Force Directed Layout of Graphs 127  
     Bibliography 130  
  Chapter 5 Protein–Protein Interaction Networks – Pairwise Connectivity 131  
     5.1 Experimental High?Throughput Methods for Detecting Protein–Protein Interactions 131  
        5.1.1 Gel Electrophoresis 132  
        5.1.2 Two?Dimensional Gel Electrophoresis 132  
        5.1.3 Affinity Chromatography 133  
        5.1.4 Yeast Two?hybrid Screening 134  
        5.1.5 Synthetic Lethality 135  
        5.1.6 Gene Coexpression 136  
        5.1.7 Databases for Interaction Networks 136  
        5.1.8 Overlap of Interactions 136  
        5.1.9 Criteria to Judge the Reliability of Interaction Data 138  
     5.2 Bioinformatic Prediction of Protein–Protein Interactions 140  
        5.2.1 Analysis of Gene Order 141  
        5.2.2 Phylogenetic Profiling/Coevolutionary Profiling 141  
           5.2.2.1 Coevolution 142  
     5.3 Bayesian Networks for Judging the Accuracy of Interactions 144  
        5.3.1 Bayes' Theorem 145  
        5.3.2 Bayesian Network 145  
        5.3.3 Application of Bayesian Networks to Protein–Protein Interaction Data 146  
           5.3.3.1 Measurement of Reliability “Likelihood Ratio” 147  
           5.3.3.2 Prior and Posterior Odds 147  
           5.3.3.3 A Worked Example: Parameters of the Naïve Bayesian Network for Essentiality 148  
           5.3.3.4 Fully Connected Experimental Network 149  
     5.4 Protein Interaction Networks 151  
        5.4.1 Protein Interaction Network of Saccharomyces cerevisiae 151  
        5.4.2 Protein Interaction Network of Escherichia coli 151  
        5.4.3 Protein Interaction Network of Human 152  
     5.5 Protein Domain Networks 152  
     5.6 Summary 155  
     5.7 Problems 156  
        5.7.1 Bayesian Analysis of (Fake) Protein Complexes 156  
     Bibliography 158  
  Chapter 6 Protein–Protein Interaction Networks – Structural Hierarchies 161  
     6.1 Protein Interaction Graph Networks 161  
        6.1.1 Degree Distribution 161  
        6.1.2 Clustering Coefficient 163  
     6.2 Finding Cliques 165  
     6.3 Random Graphs 166  
     6.4 Scale?Free Graphs 167  
     6.5 Detecting Communities in Networks 169  
        6.5.1 Divisive Algorithms for Mapping onto Tree 173  
     6.6 Modular Decomposition 175  
        6.6.1 Modular Decomposition of Graphs 177  
     6.7 Identification of Protein Complexes 181  
        6.7.1 MCODE 181  
        6.7.2 ClusterONE 182  
        6.7.3 DACO 183  
        6.7.4 Analysis of Target Gene Coexpression 184  
     6.8 Network Growth Mechanisms 185  
     6.9 Summary 189  
     6.10 Problems 189  
     Bibliography 198  
  Chapter 7 Protein–DNA Interactions 201  
     7.1 Transcription Factors 201  
     7.2 Transcription Factor?Binding Sites 203  
     7.3 Experimental Detection of TFBS 203  
        7.3.1 Electrophoretic Mobility Shift Assay 203  
        7.3.2 DNAse Footprinting 204  
        7.3.3 Protein?Binding Microarrays 205  
        7.3.4 Chromatin Immunoprecipitation Assays 207  
     7.4 Position?Specific Scoring Matrices 207  
     7.5 Binding Free Energy Models 209  
     7.6 Cis?Regulatory Motifs 211  
        7.6.1 DACO Algorithm 212  
     7.7 Relating Gene Expression to Binding of Transcription Factors 212  
     7.8 Summary 214  
     7.9 Problems 214  
     Bibliography 215  
  Chapter 8 Gene Expression and Protein Synthesis 217  
     8.1 Regulation of Gene Transcription at Promoters 217  
     8.2 Experimental Analysis of Gene Expression 218  
        8.2.1 Real?time Polymerase Chain Reaction 219  
        8.2.2 Microarray Analysis 219  
        8.2.3 RNA?seq 221  
     8.3 Statistics Primer 221  
        8.3.1 t?Test 223  
        8.3.2 z?Score 223  
        8.3.3 Fisher's Exact Test 223  
        8.3.4 Mann–Whitney–Wilcoxon Rank Sum Tests 225  
        8.3.5 Kolmogorov–Smirnov Test 226  
        8.3.6 Hypergeometric Test 226  
        8.3.7 Multiple Testing Correction 227  
     8.4 Preprocessing of Data 227  
        8.4.1 Removal of Outlier Genes 227  
        8.4.2 Quantile Normalization 228  
        8.4.3 Log Transformation 228  
     8.5 Differential Expression Analysis 229  
        8.5.1 Volcano Plot 230  
        8.5.2 SAM Analysis of Microarray Data 230  
        8.5.3 Differential Expression Analysis of RNA?seq Data 232  
           8.5.3.1 Negative Binomial Distribution 233  
           8.5.3.2 DESeq 233  
     8.6 Gene Ontology 234  
        8.6.1 Functional Enrichment 236  
     8.7 Similarity of GO Terms 237  
     8.8 Translation of Proteins 237  
        8.8.1 Transcription and Translation Dynamics 238  
     8.9 Summary 239  
     8.10 Problems 240  
     Bibliography 244  
  Chapter 9 Gene Regulatory Networks 247  
     9.1 Gene Regulatory Networks (GRNs) 248  
        9.1.1 Gene Regulatory Network of E. coli 248  
        9.1.2 Gene Regulatory Network of S. cerevisiae 251  
     9.2 Graph Theoretical Models 251  
        9.2.1 Coexpression Networks 252  
        9.2.2 Bayesian Networks 253  
     9.3 Dynamic Models 254  
        9.3.1 Boolean Networks 254  
        9.3.2 Reverse Engineering Boolean Networks 255  
        9.3.3 Differential Equations Models 256  
     9.4 DREAM: Dialogue on Reverse Engineering Assessment and Methods 258  
        9.4.1 Input Function 259  
        9.4.2 YAYG Approach in DREAM3 Contest 260  
     9.5 Regulatory Motifs 264  
        9.5.1 Feed?forward Loop (FFL) 265  
        9.5.2 SIM 265  
        9.5.3 Densely Overlapping Region (DOR) 266  
     9.6 Algorithms on Gene Regulatory Networks 267  
        9.6.1 Key?pathway Miner Algorithm 267  
        9.6.2 Identifying Sets of Dominating Nodes 268  
        9.6.3 Minimum Dominating Set 269  
        9.6.4 Minimum Connected Dominating Set 269  
     9.7 Summary 270  
     9.8 Problems 271  
     Bibliography 274  
  Chapter 10 Regulatory Noncoding RNA 277  
     10.1 Introduction to RNAs 277  
     10.2 Elements of RNA Interference: siRNAs and miRNAs 279  
     10.3 miRNA Targets 281  
     10.4 Predicting miRNA Targets 284  
     10.5 Role of TFs and miRNAs in Gene?Regulatory Networks 284  
     10.6 Constructing TF/miRNA Coregulatory Networks 286  
        10.6.1 TFmiR Web Service 287  
           10.6.1.1 Construction of Candidate TF–miRNA–Gene FFLs 288  
           10.6.1.2 Case Study 289  
     10.7 Summary 290  
     Bibliography 290  
  Chapter 11 Computational Epigenetics 293  
     11.1 Epigenetic Modifications 293  
        11.1.1 DNA Methylation 293  
           11.1.1.1 CpG Islands 296  
        11.1.2 Histone Marks 297  
        11.1.3 Chromatin?Regulating Enzymes 298  
        11.1.4 Measuring DNA Methylation Levels and Histone Marks Experimentally 299  
     11.2 Working with Epigenetic Data 301  
        11.2.1 Processing of DNA Methylation Data 301  
           11.2.1.1 Imputation of Missing Values 301  
           11.2.1.2 Smoothing of DNA Methylation Data 301  
        11.2.2 Differential Methylation Analysis 302  
        11.2.3 Comethylation Analysis 303  
        11.2.4 Working with Data on Histone Marks 305  
     11.3 Chromatin States 306  
        11.3.1 Measuring Chromatin States 306  
        11.3.2 Connecting Epigenetic Marks and Gene Expression by Linear Models 307  
        11.3.3 Markov Models and Hidden Markov Models 308  
        11.3.4 Architecture of a Hidden Markov Model 310  
        11.3.5 Elements of an HMM 311  
     11.4 The Role of Epigenetics in Cellular Differentiation and Reprogramming 312  
        11.4.1 Short History of Stem Cell Research 313  
        11.4.2 Developmental Gene Regulatory Networks 313  
     11.5 The Role of Epigenetics in Cancer and Complex Diseases 315  
     11.6 Summary 316  
     11.7 Problems 316  
     Bibliography 321  
  Chapter 12 Metabolic Networks 323  
     12.1 Introduction 323  
     12.2 Resources on Metabolic Network Representations 326  
     12.3 Stoichiometric Matrix 328  
     12.4 Linear Algebra Primer 329  
        12.4.1 Matrices: Definitions and Notations 329  
        12.4.2 Adding, Subtracting, and Multiplying Matrices 330  
        12.4.3 Linear Transformations, Ranks, and Transpose 331  
        12.4.4 Square Matrices and Matrix Inversion 331  
        12.4.5 Eigenvalues of Matrices 332  
        12.4.6 Systems of Linear Equations 333  
     12.5 Flux Balance Analysis 334  
        12.5.1 Gene Knockouts: MOMA Algorithm 336  
        12.5.2 OptKnock Algorithm 338  
     12.6 Double Description Method 339  
     12.7 Extreme Pathways and Elementary Modes 344  
        12.7.1 Steps of the Extreme Pathway Algorithm 344  
        12.7.2 Analysis of Extreme Pathways 348  
        12.7.3 Elementary Flux Modes 349  
        12.7.4 Pruning Metabolic Networks: NetworkReducer 351  
     12.8 Minimal Cut Sets 352  
        12.8.1 Applications of Minimal Cut Sets 357  
     12.9 High?Flux Backbone 359  
     12.10 Summary 361  
     12.11 Problems 361  
        12.11.1 Static Network Properties: Pathways 361  
     Bibliography 366  
  Chapter 13 Kinetic Modeling of Cellular Processes 369  
     13.1 Biological Oscillators 369  
     13.2 Circadian Clocks 370  
        13.2.1 Role of Post?transcriptional Modifications 372  
     13.3 Ordinary Differential Equation Models 373  
        13.3.1 Examples for ODEs 374  
     13.4 Modeling Cellular Feedback Loops by ODEs 376  
        13.4.1 Protein Synthesis and Degradation: Linear Response 376  
        13.4.2 Phosphorylation/Dephosphorylation – Hyperbolic Response 377  
        13.4.3 Phosphorylation/Dephosphorylation – Buzzer 379  
        13.4.4 Perfect Adaptation – Sniffer 380  
        13.4.5 Positive Feedback – One?Way Switch 381  
        13.4.6 Mutual Inhibition – Toggle Switch 382  
        13.4.7 Negative Feedback – Homeostasis 382  
        13.4.8 Negative Feedback: Oscillatory Response 384  
        13.4.9 Cell Cycle Control System 385  
     13.5 Partial Differential Equations 386  
        13.5.1 Spatial Gradients of Signaling Activities 388  
        13.5.2 Reaction–Diffusion Systems 388  
     13.6 Dynamic Phosphorylation of Proteins 389  
     13.7 Summary 390  
     13.8 Problems 392  
     Bibliography 393  
  Chapter 14 Stochastic Processes in Biological Cells 395  
     14.1 Stochastic Processes 395  
        14.1.1 Binomial Distribution 396  
        14.1.2 Poisson Process 397  
        14.1.3 Master Equation 397  
     14.2 Dynamic Monte Carlo (Gillespie Algorithm) 398  
        14.2.1 Basic Outline of the Gillespie Method 399  
     14.3 Stochastic Effects in Gene Transcription 400  
        14.3.1 Expression of a Single Gene 400  
        14.3.2 Toggle Switch 401  
     14.4 Stochastic Modeling of a Small Molecular Network 405  
        14.4.1 Model System: Bacterial Photosynthesis 405  
        14.4.2 Pools?and?Proteins Model 406  
        14.4.3 Evaluating the Binding and Unbinding Kinetics 407  
        14.4.4 Pools of the Chromatophore Vesicle 409  
        14.4.5 Steady?State Regimes of the Vesicle 409  
     14.5 Parameter Optimization with Genetic Algorithm 412  
     14.6 Protein–Protein Association 415  
     14.7 Brownian Dynamics Simulations 416  
     14.8 Summary 418  
     14.9 Problems 420  
        14.9.1 Dynamic Simulations of Networks 420  
     Bibliography 427  
  Chapter 15 Integrated Cellular Networks 429  
     15.1 Response of Gene Regulatory Network to Outside Stimuli 430  
     15.2 Whole?Cell Model of Mycoplasma genitalium 432  
     15.3 Architecture of the Nuclear Pore Complex 436  
     15.4 Integrative Differential Gene Regulatory Network for Breast Cancer Identified Putative Cancer Driver Genes 436  
     15.5 Particle Simulations 441  
     15.6 Summary 443  
     Bibliography 444  
  Chapter 16 Outlook 447  
  Index 449  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz