Hilfe Warenkorb Konto Anmelden
 
 
   Schnellsuche   
     zur Expertensuche                      
Spectroscopic Ellipsometry - Principles and Applications
  Großes Bild
 
Spectroscopic Ellipsometry - Principles and Applications
von: Hiroyuki Fujiwara
Wiley, 2007
ISBN: 9780470060186
392 Seiten, Download: 15744 KB
 
Format:  PDF
geeignet für: Apple iPad, Android Tablet PC's Online-Lesen PC, MAC, Laptop

Typ: A (einfacher Zugriff)

 

 
eBook anfordern
Inhaltsverzeichnis

  Spectroscopic Ellipsometry 3  
     Contents 9  
     Foreword 15  
     Preface 17  
     Acknowledgments 19  
     1 Introduction to Spectroscopic Ellipsometry 21  
        1.1 Features of Spectroscopic Ellipsometry 21  
        1.2 Applications of Spectroscopic Ellipsometry 23  
        1.3 Data Analysis 25  
        1.4 History of Development 27  
        1.5 Future Prospects 29  
        References 30  
     2 Principles of Optics 33  
        2.1 Propagation of Light 33  
           2.1.1 Propagation of One-Dimensional Waves 33  
           2.1.2 Electromagnetic Waves 38  
           2.1.3 Refractive Index 39  
        2.2 Dielectrics 44  
           2.2.1 Dielectric Polarization 44  
           2.2.2 Dielectric Constant 45  
           2.2.3 Dielectric Function 49  
        2.3 Reflection and Transmission of Light 52  
           2.3.1 Refraction of Light 52  
           2.3.2 p- and s-Polarized Light Waves 53  
           2.3.3 Reflectance and Transmittance 59  
           2.3.4 Brewster Angle 60  
           2.3.5 Total Reflection 62  
        2.4 Optical Interference 63  
           2.4.1 Optical Interference in Thin Films 63  
           2.4.2 Multilayers 66  
        References 68  
     3 Polarization of Light 69  
        3.1 Representation of Polarized Light 69  
           3.1.1 Phase of Light 69  
           3.1.2 Polarization States of Light Waves 70  
        3.2 Optical Elements 72  
           3.2.1 Polarizer (Analyzer) 73  
           3.2.2 Compensator (Retarder) 77  
           3.2.3 Photoelastic Modulator 78  
           3.2.4 Depolarizer 79  
        3.3 Jones Matrix 80  
           3.3.1 Jones Vector 80  
           3.3.2 Transformation of Coordinate Systems 82  
           3.3.3 Jones Matrices of Optical Elements 86  
           3.3.4 Representation of Optical Measurement by Jones Matrices 88  
        3.4 Stokes Parameters 90  
           3.4.1 Definition of Stokes Parameters 90  
           3.4.2 Poincaré Sphere 92  
           3.4.3 Partially Polarized Light 95  
           3.4.4 Mueller Matrix 97  
        References 98  
     4 Principles of Spectroscopic Ellipsometry 101  
        4.1 Principles of Ellipsometry Measurement 101  
           4.1.1 Measured Values in Ellipsometry 101  
           4.1.2 Coordinate System in Ellipsometry 104  
           4.1.3 Jones and Mueller Matrices of Samples 106  
        4.2 Ellipsometry Measurement 107  
           4.2.1 Measurement Methods of Ellipsometry 107  
           4.2.2 Rotating-Analyzer Ellipsometry (RAE) 113  
           4.2.3 Rotating-Analyzer Ellipsometry with Compensator 117  
           4.2.4 Rotating-Compensator Ellipsometry (RCE) 119  
           4.2.5 Phase-Modulation Ellipsometry (PME) 124  
           4.2.6 Infrared Spectroscopic Ellipsometry 126  
           4.2.7 Mueller Matrix Ellipsometry 131  
           4.2.8 Null Ellipsometry and Imaging Ellipsometry 133  
        4.3 Instrumentation for Ellipsometry 137  
           4.3.1 Installation of Ellipsometry System 137  
           4.3.2 Fourier Analysis 140  
           4.3.3 Calibration of Optical Elements 142  
           4.3.4 Correction of Measurement Errors 147  
        4.4 Precision and Error of Measurement 150  
           4.4.1 Variation of Precision and Error with Measurement Method 151  
           4.4.2 Precision of (?, ?) 155  
           4.4.3 Precision of Film Thickness and Absorption Coefficient 157  
           4.4.4 Depolarization Effect of Samples 159  
        References 161  
     5 Data Analysis 167  
        5.1 Interpretation of (?, ?) 167  
           5.1.1 Variations of (?, ?) with Optical Constants 167  
           5.1.2 Variations of (?, ?) in Transparent Films 170  
           5.1.3 Variations of (?, ?) in Absorbing Films 175  
        5.2 Dielectric Function Models 178  
           5.2.1 Lorentz Model 180  
           5.2.2 Interpretation of the Lorentz Model 182  
           5.2.3 Sellmeier and Cauchy Models 190  
           5.2.4 Tauc–Lorentz Model 190  
           5.2.5 Drude Model 193  
           5.2.6 Kramers–Kronig Relations 196  
        5.3 Effective Medium Approximation 197  
           5.3.1 Effective Medium Theories 197  
           5.3.2 Modeling of Surface Roughness 201  
           5.3.3 Limitations of Effective Medium Theories 204  
        5.4 Optical Models 207  
           5.4.1 Construction of Optical Models 207  
           5.4.2 Pseudo-Dielectric Function 209  
           5.4.3 Optimization of Sample Structures 211  
           5.4.4 Optical Models for Depolarizing Samples 211  
        5.5 Data Analysis Procedure 216  
           5.5.1 Linear Regression Analysis 216  
           5.5.2 Fitting Error Function 219  
           5.5.3 Mathematical Inversion 220  
        References 224  
     6 Ellipsometry of Anisotropic Materials 229  
        6.1 Reflection and Transmission of Light by Anisotropic Materials 229  
           6.1.1 Light Propagation in Anisotropic Media 229  
           6.1.2 Index Ellipsoid 233  
           6.1.3 Dielectric Tensor 235  
           6.1.4 Jones Matrix of Anisotropic Samples 237  
        6.2 Fresnel Equations for Anisotropic Materials 242  
           6.2.1 Anisotropic Substrate 242  
           6.2.2 Anisotropic Thin Film on Isotropic Substrate 244  
        6.3 4×4 Matrix Method 246  
           6.3.1 Principles of the 4×4 Matrix Method 246  
           6.3.2 Calculation Method of Partial Transfer Matrix 252  
           6.3.3 Calculation Methods of Incident and Exit Matrices 253  
           6.3.4 Calculation Procedure of the 4×4 Matrix Method 256  
        6.4 Interpretation of (?, ?) for Anisotropic Materials 257  
           6.4.1 Variations of (?, ?) in Anisotropic Substrates 257  
           6.4.2 Variations of (?, ?) in Anisotropic Thin Films 261  
        6.5 Measurement and Data Analysis of Anisotropic Materials 263  
           6.5.1 Measurement Methods 263  
           6.5.2 Data Analysis Methods 265  
        References 266  
     7 Data Analysis Examples 269  
        7.1 Insulators 269  
           7.1.1 Analysis Examples 269  
           7.1.2 Advanced Analysis 272  
        7.2 Semiconductors 276  
           7.2.1 Optical Transitions in Semiconductors 276  
           7.2.2 Modeling of Dielectric Functions 278  
           7.2.3 Analysis Examples 282  
           7.2.4 Analysis of Dielectric Functions 288  
        7.3 Metals/Semiconductors 296  
           7.3.1 Dielectric Function of Metals 296  
           7.3.2 Analysis of Free-Carrier Absorption 301  
           7.3.3 Advanced Analysis 306  
        7.4 Organic Materials/Biomaterials 307  
           7.4.1 Analysis of Organic Materials 307  
           7.4.2 Analysis of Biomaterials 312  
        7.5 Anisotropic Materials 314  
           7.5.1 Analysis of Anisotropic Insulators 315  
           7.5.2 Analysis of Anisotropic Semiconductors 316  
           7.5.3 Analysis of Anisotropic Organic Materials 319  
        References 323  
     8 Real-Time Monitoring by Spectroscopic Ellipsometry 331  
        8.1 Data Analysis in Real-Time Monitoring 331  
           8.1.1 Procedures for Real-Time Data Analysis 332  
           8.1.2 Linear Regression Analysis (LRA) 333  
           8.1.3 Global Error Minimization (GEM) 337  
           8.1.4 Virtual Substrate Approximation (VSA) 343  
        8.2 Observation of Thin-Film Growth by Real-Time Monitoring 348  
           8.2.1 Analysis Examples 348  
           8.2.2 Advanced Analysis 351  
        8.3 Process Control by Real-Time Monitoring 353  
           8.3.1 Data Analysis in Process Control 354  
           8.3.2 Process Control by Linear Regression Analysis (LRA) 354  
           8.3.3 Process Control by Virtual Substrate Approximation (VSA) 360  
        References 362  
     Appendices 365  
     1 Trigonometric Functions 365  
     2 Definitions of Optical Constants 367  
     3 Maxwell’s Equations for Conductors 369  
     4 Jones–Mueller Matrix Conversion 373  
     5 Kramers–Kronig Relations 377  
     Index 381  


nach oben


  Mehr zum Inhalt
Kapitelübersicht
Kurzinformation
Inhaltsverzeichnis
Leseprobe
Blick ins Buch
Fragen zu eBooks?

  Medientyp
  eBooks
  eJournal
  alle

  Navigation
Belletristik / Romane
Computer
Geschichte
Kultur
Medizin / Gesundheit
Philosophie / Religion
Politik
Psychologie / Pädagogik
Ratgeber
Recht
Reise / Hobbys
Technik / Wissen
Wirtschaft

© 2008-2024 ciando GmbH | Impressum | Kontakt | F.A.Q. | Datenschutz